Unboxing AI | Live Webinar Every Thursday | Unboxing CARPL.ai: Discover (16th Jan), Explore (23rd Jan), Validate (30th Jan), Deploy (6th Feb) 11 am ET | Register Now
  • 2024-12-02

RadNet’s Wholly-Owned Subsidiary, DeepHealth, to Use CARPL.ai's Platform to Develop a New AI Control System for Clinical AI Performance and Safety

LOS ANGELES and SOMERVILLE, Mass., Dec. 01, 2024 (GLOBE NEWSWIRE) -- DeepHealth, Inc., a global leader in AI-powered health informatics and a wholly-owned subsidiary of RadNet, Inc. (NASDAQ: RDNT), today announced a strategic collaboration with CARPL.ai, a leading AI orchestration company that enables radiologists to access, assess, and integrate radiology AI solutions in their workflows. DeepHealth will use CARPL.ai’s technology to develop an AI control system that can be commercialized and will be designed to monitor and optimize imaging AI performance for improved clinical outcomes, operational efficiency, and accelerated adoption of AI in radiology. AI monitoring is crucial to ensure reliable, accurate, and unbiased performance.

The two companies will collaborate on a new closed-loop AI feedback system that will continually monitor AI model accuracy and relevance in clinical settings. The system will automate the measurement and monitoring of performance and safety metrics such as specificity, sensitivity, data- and model drift.

“Establishing a robust AI infrastructure with monitoring tools is key for safe, effective, and scalable AI adoption in radiology. While the current landscape is marked by an overwhelming array of AI-enabled point solutions, the future involves running multiple AI models, even for a single use case. DeepHealth’s partnership with CARPL.ai addresses this very need by creating a unique environment to dynamically run a combination of models and monitor performance and then continuously optimize the best models for specific tasks,” said Sham Sokka, PhD, Chief Operating and Technology Officer, DeepHealth.

The partnership will also combine CARPL.ai’s AI marketplace and orchestration platform, which offers a simplified process for selecting, implementing, and monitoring third-party FDA-cleared AI models, with DeepHealth’s cloud-native operating system, DeepHealth OS, which unifies data across the clinical and operational workflows. These platforms will be integrated and extended to monitor real-world workflows on an ongoing basis. The aim is to enable radiologists to access performant and safe AI interpretation tools deeply integrated in their workflows.

“We are very excited to partner with DeepHealth to harness the transformative potential of AI within the radiology care continuum, particularly through workflow automation and clinical assistance. This new AI infrastructure is set to fundamentally redefine radiology by making AI an integral component of the system,” said Dr. Vidur Mahajan, CEO of CARPL.ai. “Monitoring AI performance is essential to ensure the reliability and accuracy of AI applications over time, and our technology enables real-time performance monitoring of both their accuracy and consistency for safe and effective use of AI in clinical practice.”

For more information, visit the DeepHealth (#1340) and CARPL.ai (#5733) booths at the Radiological Society of North America 2024 Annual Meeting.

About RadNet, Inc.

RadNet, Inc. is the leading national provider of freestanding, fixed-site diagnostic imaging services in the United States based on the number of locations and annual imaging revenue. RadNet has a network of 399 owned and/or operated outpatient imaging centers. RadNet’s markets include Arizona, California, Delaware, Florida, Maryland, New Jersey, New York and Texas. In addition, RadNet provides radiology information technology and artificial intelligence solutions marketed under the DeepHealth brand, teleradiology professional services and other related products and services to customers in the diagnostic imaging industry. Together with affiliated radiologists, and inclusive of full-time and per diem employees and technologists, RadNet has a total of over 10,000 employees. For more information, visit http://www.radnet.com.


About DeepHealth

DeepHealth is a wholly-owned subsidiary of RadNet, Inc. (NASDAQ: RDNT) and serves as the umbrella brand for all companies within RadNet's Digital Health segment. DeepHealth provides AI-powered health informatics with the aim of empowering breakthroughs in care through imaging. Building on the strengths of the companies it has integrated and is rebranding (i.e., eRAD Radiology Information and Image Management Systems and Picture Archiving and Communication System, Aidence lung AI, DeepHealth and Kheiron breast AI and Quantib prostate and brain AI), DeepHealth leverages advanced AI for operational efficiency and improved clinical outcomes in lung, breast, prostate, and brain health. At the heart of DeepHealth’s portfolio is a cloud-native operating system - DeepHealth OS - that unifies data across the clinical and operational workflow and personalizes AI-powered workspaces for everyone in the radiology continuum. Thousands of radiologists at hundreds of imaging centers and radiology departments around the world use DeepHealth solutions to enable earlier, more reliable, and more efficient disease detection, including in large-scale cancer screening programs. DeepHealth’s human-centered, intuitive technology aims to push the boundaries of what's possible in healthcare. https://deephealth.com/

About CARPL.ai

CARPL.ai is a vendor-neutral Artificial Intelligence (AI) platform that allows radiologists to access, assess, and integrate radiology AI solutions in their clinical practice.

CARPL provides a single user interface, a single data channel, and a single procurement channel for the testing, deployment, and monitoring of AI solutions in clinical radiology workflows.

We are the world’s largest radiology AI marketplace offering 140+ applications from 60+ AI vendors.

For more information, visit https://carpl.ai/.

Unlock the potential of CARPL platform for optimizing radiology workflows

Talk to a Clinical Solutions Architect