Unboxing AI | Friday Webinars @ 11 AM ET | Dr Leonardo K Bittencourt, University Hospitals (July 12) | Kevin Harris, CureMetrix (July 19) | Dr Ryan Lee, Jefferson Health (July 26) | Register Now
  • 2020-01-13

Automated Vertebral labeling and Quantification of Spondylotic Metrics of MR Lumbar Spine using neural networks-A Retrospective Validation Study on Advanced Analytics Platform.

MRI of the spine is one of the commonest studies performed in clinical practice usually to study the cause of back pain. The reading of spine MR studies involves identifying the vertebral levels, estimating stenosis of the spinal canal, detecting the reduction in the vertebral height and also identifying spondylolisthesis. Several studies have shown that deep learning can assist in some of these tasks by automating them. In this study, we propose to use a platform-based approach for quick validation of a CNN based multi-modular set of custom Neural Networks that can automatically label the vertebral level and measure the central canal diameter, vertebral height, alignment, and disc height.

Link to complete publication here: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LSnAkaUAAAAJ&cstart=20&pagesize=80&citation_for_view=LSnAkaUAAAAJ:Zph67rFs4hoC

Unlock the potential of CARPL platform for optimizing radiology workflows

Talk to a Clinical Solutions Architect