Unboxing AI | Friday Webinars @ 11 AM ET | Dr Leonardo K Bittencourt, University Hospitals (July 12) | Kevin Harris, CureMetrix (July 19) | Dr Ryan Lee, Jefferson Health (July 26) | Register Now
  • 2018-12-01

Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study

Background

Non-contrast head CT scan is the current standard for initial imaging of patients with head trauma or stroke symptoms. We aimed to develop and validate a set of deep learning algorithms for automated detection of the following key findings from these scans: intracranial haemorrhage and its types (ie, intraparenchymal, intraventricular, subdural, extradural, and subarachnoid); calvarial fractures; midline shift; and mass effect.

Methods

We retrospectively collected a dataset containing 313 318 head CT scans together with their clinical reports from around 20 centres in India between Jan 1, 2011, and June 1, 2017. A randomly selected part of this dataset (Qure25k dataset) was used for validation and the rest was used to develop algorithms. An additional validation dataset (CQ500 dataset) was collected in two batches from centres that were different from those used for the development and Qure25k

Link to complete publication here: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=dqpMNRUAAAAJ&citation_for_view=dqpMNRUAAAAJ:9yKSN-GCB0IC

Unlock the potential of CARPL platform for optimizing radiology workflows

Talk to a Clinical Solutions Architect