Unboxing AI | Live Webinar Every Friday | Sham Sokka, PhD, Deephealth (Dec 20) @ 11 am ET | Latha Poonamallee, Ph.D., InMed.ai (Dec 27) @11 am ET | Register Now
  • 2020-01-11

Modified radial-search algorithm for segmentation of tibiofemoral cartilage in MR images of patients with subchondral lesion

Abstract

Purpose:

The quantitative analysis of weight-bearing articular cartilage superficial to subchondral abnormality is important in osteoarthritis (OA) progression studies. The current study aimed to address the challenges of a semi-automatic segmentation of tibiofemoral cartilage in MR images of OA patient with and without subchondral bone abnormalities (SBA).

Methods:

In this study, knee MRI data [fat-suppressed proton density-weighted, multi-echo T2-weighted (CartiGram) images] of 29 OA patients, acquired at 3.0T MR scanner, were retrospectively collected. Out of 29 data, 9 had SBA in femur bone. Initially, a semi-automatic femur cartilage segmentation based on radial intensity search approach by Akhtar et al. was implemented in-house. This algorithm was considered as the radial-search method for further comparison. In this current study, the reported radial-search (RS)-based semi-automatic cartilage segmentation method was modified using thresholding, connected component labelling, convex-hull operation and spline-based curve fitting for the improved segmentation of tibiofemoral cartilage. Cartilage was manually segmented by two experienced radiologists, and inter-reader variability was estimated using coefficient of variation (CV). The segmentation results were validated using dice coefficient (DC), Jaccard coefficient (JC) and sensitivity index measurements.

Results:

DC values for segmented femur cartilage in patients with SBA were 64.6 ± 7.8% and 81.4 ± 2.8% using reported RS method and modified radial-search method, respectively. DC values for segmented femur cartilage in patients without SBA were 82.5 ± 4.5% and 84.8 ± 2.0% using RS method and modified radial method, respectively. Similarly, DC values for tibial cartilage in all OA patients were 80.4 ± 1.6% and 81.9 ± 2.4% using RS method and modified radial method, respectively. Similar segmentation results were also obtained from the T2-weighted images. Inter-reader variability result based on CV in femur cartilage was 3.40 ± 2.12% (without SBA) and 4.18 ± 3.18% (with SBA).

Conclusion:

In the current study, a semi-automated segmentation of tibiofemoral cartilage was presented. Modified radial-search approach can successfully segment tibiofemoral cartilage, and the results were tested and validated on knee MRI data of OA patients with and without SBA.

For full paper: https://link.springer.com/article/10.1007/s11548-020-02116-z

Unlock the potential of CARPL platform for optimizing radiology workflows

Talk to a Clinical Solutions Architect